Abstract

Two tridimensional N-doped porous carbon sponges (3DC-X) have been prepared by using cetyltrimethylammonium chloride (CTAC) and cetyltrimethylammonium bromide (CTAB) as soft templates and alginate to replicate the liquid crystals formed by CTA+ in water. Alginate is a filmogenic polysaccharide of natural origin having the ability to form nanometric defectless films around objects. Subsequent pyrolysis at 900 °C under an Ar flow of the resulting CTA+–polysaccharide assemblies result in 3DC-1 and 3DC-2, with the N percentages of 0.48 and 0.36 wt % for the materials resulting from CTAC and CTAB, respectively. Another four 3DC materials were obtained via pyrolysis of the adduct of phytic acid and chitosan, rendering an amorphous, N and P-codoped carbon sample (3DC-3 to 3DC-6). The six 3DC samples exhibit a large area (>650 m2 × g–1) and porosity, as determined by Ar adsorption. The catalytic activity of these materials in promoting the aerobic oxidation of benzylamine increases with the specific surface area and doping, being the largest for 3DC-4, which is able to achieve 73% benzylamine conversion to N-benzylidene benzylamine in solventless conditions at 70 °C in 5 h. Quenching studies and hot filtration tests indicate that 3DC-4 acts as a heterogeneous catalyst rather than an initiator, triggering the formation of hydroperoxyl and hydroxyl radicals as the main reactive oxygen species involved in the aerobic oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call