Abstract
We consider the problem of designing optimal and efficient algorithms for solving tridiagonal linear systems with multiple right-hand side vectors on k-dimensional mesh and torus interconnection networks. We derive asymptotic upper and lower bounds for these solvers using odd-even cyclic reduction. We present various important bounds on execution time including general lower bounds which are independent of initial data assignment, and lower bounds based on classifying assignments via the proportion of initial data assigned amongst processors. Finally, different algorithms are designed in order to achieve running times that are within a small constant factor of the lower bounds provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.