Abstract

We consider the reduction of a symmetric indefinite matrix pair (A,B), with B nonsingular, to tridiagonal-diagonal form by congruence transformations. This is an important reduction in solving polynomial eigenvalue problems with symmetric coefficient matrices and in frequency response computations. The pair is first reduced to symmetric-diagonal form. We describe three methods for reducing the symmetric-diagonal pair to tridiagonal-diagonal form. Two of them employ more stable versions of Brebner and Grad's pseudosymmetric Givens and pseudosymmetric Householder reductions, while the third is new and based on a combination of Householder reflectors and hyperbolic rotations. We prove an optimality condition for the transformations used in the third reduction. We present numerical experiments that compare the different approaches and show improvements over Brebner and Grad's reductions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.