Abstract
A novel factorization for the sum of two single-pair matrices is established as product of lower-triangular, tridiagonal, and upper-triangular matrices, leading to semi-closed-form formulas for tridiagonal matrix inversion. Subsequent factorizations are established, leading to semi-closed-form formulas for the inverse sum of two single-pair matrices. An application to derive the symbolic inverse of a particular Gram matrix is presented, and the numerical stability of the formulas is studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.