Abstract

Replication of human immunodeficiency virus type 1 (HIV-1) is controlled by a variety of viral and host proteins. The viral protein Tat acts in concert with host cellular factors to stimulate transcriptional elongation from the viral long terminal repeat (LTR) through a specific interaction with a 59-residue stem-loop RNA known as the trans-activation responsive element (TAR). Inhibitors of Tat-TAR recognition are expected to block transcription and suppress HIV-1 replication. In previous studies, we showed that 2'-O-methyl (OMe) oligonucleotide mixmers containing locked nucleic acid (LNA) residues are powerful steric block inhibitors of Tat-dependent trans-activation in a HeLa cell reporter system. Here we compare OMe/LNA mixmer oligonucleotides with oligonucleotides containing tricyclo-DNAs and their mixmers with OMe residues in four different assays: (1) binding to the target TAR RNA, (2) Tat-dependent in vitro transcription from an HIV-1 DNA template directed by HeLa cell nuclear extract, (3) trans-activation inhibition in HeLa cells containing a stably integrated firefly luciferase reporter gene under HIV-1 LTR control, and (4) an anti-HIV beta-galactosidase reporter assay of viral infection. Although tricyclo-DNA oligonucleotides bound TAR RNA more weakly, they were as good as OMe/LNA oligonucleotides in suppressing in vitro transcription and trans-activation in HeLa cells when delivered by cationic lipid. No inhibition of in vitro transcription and trans-activation in HeLa cells was observed for tricyclo-DNA/OMe mixmers, even though their affinities to TAR RNA were strong and their cell distributions did not differ from oligonucleotides containing all or predominantly tricyclo-DNA residues. Tricyclo-DNA 16-mer showed sequence-specific inhibition of beta-galactosidase expression in an anti-HIV HeLa cell reporter assay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.