Abstract

Tricyclic antidepressants such as amitriptyline (AMT) have been reported to have adverse side effects on cardiac performance. AMT effects on Ca handling in ventricular myocytes, however, are not well understood. Therefore, we investigated AMT action on sarcoplasmic reticulum (SR) Ca release in ventricular myocytes, ryanodine receptor (RyR) activity, and Ca uptake by SR microsomes. In permeabilized myocytes, AMT transiently increased free luminal Ca concentration ([Ca]) followed by marked depletion. AMT (10 microM) caused a rapid and a transient increase of Ca spark frequency, followed by a significant suppression of spark activity. The latter was associated with a decrease of Ca spark amplitude and SR Ca load to 87 and 60%, respectively. AMT (10 microM) completely abolished propagation of spontaneous Ca waves. Higher concentrations of AMT (0.1-1 mM) evoked SR Ca release reminiscent of the effect of caffeine (20 mM) and caused almost complete depletion of SR Ca content. Studies on single calsequestrin-free RyR channels revealed that AMT increased the mean open time and open probability (Po) in a dose-dependent fashion (dissociation constant = 4.2 microM). High concentrations of AMT (> 25 microM) evoked frequent long openings with Po reaching very high levels (> 0.70). In studies with cardiac SR microsomes, AMT slowed the rate of ATP-dependent Ca uptake. We conclude that AMT affects SR Ca handling in ventricular myocytes by multiple mechanisms, including direct stimulation of RyRs and inhibition of SR Ca uptake. These effects could contribute to AMT cardiotoxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.