Abstract

An efficient technique to cut polygonal meshes as a step in the geometric modeling of topographic and geological data has been developed. In boundary represented models of outcropping strata and faulted horizons polygonal meshes often intersect each other. TRICUT determines the line of intersection and re-triangulates the area of contact. Along this line the mesh is split in two or more parts which can be selected for removal. The user interaction takes place in the 3D-model space. The intersection, selection and removal are under graphic control. The visualization of outcropping geological structures in digital terrain models is improved by determining intersections against a slightly shifted terrain model. Thus, the outcrop line becomes a surface which overlaps the terrain in its initial position. The area of this overlapping surface changes with respect to the strike and dip of the structure, the morphology and the offset. Some applications of TRICUT on different real datasets are shown. TRICUT is implemented in C++ using the Visualization Toolkit in conjunction with the RAPID and TRIANGLE libraries. The program runs under LINUX and UNIX using the MESA OpenGL library. This work gives an example of solving a complex 3D geometric problem by integrating available robust public domain software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.