Abstract
Triclosan (TCS), employed as an antiseptic and disinfectant, comes into direct contact with humans through a plethora of consumer products and its rising environmental release. We have demonstrated that TCS promotes liver tumorigenesis in mice, yet the biological and molecular mechanisms by which TCS exerts its toxicity, especially in early stages of liver disease, are largely unexplored. When mice were fed a high-fat diet (HFD), we found that fatty liver and dyslipidemia are prominent early signs of liver abnormality induced by TCS. The presumably protective HFD-induced hepatic expression of the metabolic regulator fibroblast growth factor 21 (FGF21) was blunted by TCS. TCS-altered Fgf21 expression aligned with aberrant expression of genes encoding metabolic enzymes manifested as profound systemic metabolic changes that disturb homeostasis of amino acids, fatty acids, and glucose. Using a type 1 diabetic animal model, TCS potentiates and accelerates the development of steatohepatitis and fibrosis, accompanied by increased levels of hepatic lipid droplets and oxidative stress. Analysis of fecal samples revealed that HFD-fed mice exhibited a reduction in fecal species richness, and that TCS further diminished microbial diversity and shifted the bacterial community toward lower Bacteriodetes and higher Firmicutes, resembling changes in microbiota composition in nonalcoholic steatohepatitis (NASH) patients. Using reverse-genetic approaches, we demonstrate that, along with HFD, TCS induces hepatic steatosis and steatohepatitis jointly regulated by the transcription factor ATF4 and the nuclear receptor PPARα, which participate in the transcriptional regulation of the Fgf21 gene. This study provides evidence linking nutritional imbalance and exposure to TCS with the progression of NASH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.