Abstract

Burkitt's lymphoma (BL) is the fastest growing human tumor. Current treatment consists of a multiagent regimen of cytotoxic drugs with serious side effjects including tumor lysis, cardiotoxicity, hepatic impairment, neuropathy, myelosuppression, increased susceptibility to malignancy, and death. Furthermore, therapeutic interventions in areas of BL prevalence are not as feasible as in high-income countries. Therefore, there exists an urgent need to identify new therapies with a safer profile and improved accessibility. Triclosan (TCS), an antimicrobial used in personal care products and surgical scrubs, has gained considerable interest as an antitumor agent due to its interference with fatty acid synthesis. Here, we investigate the antitumor properties and associated molecular mechanisms of TCS in BL-derived BJAB cells. Dose-dependent cell death was observed following treatment with 10-100µM TCS for 24h, which was associated with membrane phospholipid scrambling, compromised permeability, and cell shrinkage. TCS-induced cell death was accompanied by elevated intracellular calcium, perturbed redox balance, chromatin condensation, and DNA fragmentation. TCS upregulated Bad expression and downregulated that of Bcl2. Moreover, caspase and JNK MAPK signaling were required for the full apoptotic activity of TCS. In conclusion, this report identifies TCS as an antitumor agent and provides new insights into the molecular mechanisms governing TCS-induced apoptosis in BL cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.