Abstract

Gas and liquid velocities in laboratory scale trickle bed reactors are one or two orders of magnitude lower than those in commercial reactors. Then, the kinetic data may include the external effects. This shortcoming of laboratory scale trickle bed reactor can be resolved by diluting the catalyst bed with fine inert particles. The catalyst bed dilution increases dynamic liquid holdup, pressure drop, gas–liquid mass transfer coefficient. Hydrogenation of 2-phenylpropene on Pd/Al 2O 3 was performed with the trickle bed reactor diluted with fine inert particles and the coiled tubular flow-type reactor to compare the kinetics with that of the basket type batch reactor. The trickle bed reactor diluted with fine inert particles is suitable to obtain the reaction rate without external effects even if the liquid velocity is low. The coiled tubular flow-type reactor should be used at high gas velocities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.