Abstract

White-light-emitting diodes (WLEDs) are promoted as environmentally friendly because they are energy saving-features and mercury-free aspects, but, rare-earth-free, metal-free, cost-competitive, and eco-friendly for brighter WLEDs are attractive but quite challenging in practice. This paper reports a new methodology using biopolymer luminous material in bio hybrid white-light-emitting diodes (Bio-HWLEDs) based on a trichromophore-doped cassava crystalline thick film that emits bright white light emission through a dual Fӧrster resonance energy transfer (FRET) process. The dual-FRET takes place from coumarin to sulforhodamine via the curcumin chromophore. The Bio-HWLED showed color co-ordinates (0.33, 0.32) that exactly matched with pure white light emission. The effect of temperature on luminescence and the activation energy for thermal quenching were determined using the temperature-dependent photoluminescence measurements. Moreover, Bio-HWLED showed a low luminous drop rate of 0.00069 s−1 to overcome the aggregation-induced quenching effect. These results pave the way towards the realization of commercially viable, large-scale and high-contrast bio hybrid light applications that are environmentally friendly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.