Abstract

AimsIt is well known that cigarette smoke (CS) is the main risk factor for chronic obstructive pulmonary disease (COPD) accompanied by skeletal muscle atrophy. Histone deacetylases (HDACs) that remove acetyl groups from target proteins are necessary for the muscle atrophy associated with skeletal muscle disuse. However, the role of HDACs and trichostatin A (TSA), a HDAC inhibitor, in skeletal muscle atrophy caused by CS exposure remains poorly understood. Main methodsFemale mice were exposed to CS twice daily for 40 days and TSA injected intraperitoneally into CS-exposed mice on alternate days. Skeletal muscles were weighed and gastrocnemius (Gas) muscle histomorphology examined by hematoxylin and eosin staining. Histone deacetylases 1 and 2 (HDAC1/2), and markers of ubiquitin degradation, muscle differentiation, apoptosis, pyroptosis, and the cytoskeletal proteins were assessed by western blot and immunohistochemistry in Gas. KeyfindingsCS exposure decreased body and skeletal muscle weights and triggered an increase in the percentage of fiber with centralized nuclei in Gas. HDAC1/2 proteins were upregulated in the Gas of mice exposed to CS, while TSA effectively inhibited HDAC1/2 protein levels and attenuated the loss of body weight and skeletal muscle wet weight induced by CS exposure. Markers for ubiquitin degradation, muscle differentiation, cytoskeletal proteins, apoptosis and pyroptosis were all upregulated following CS exposure and effectively restored by TSA. SignificanceTSA may inhibit skeletal muscle atrophy and histomorphological alterations induced by CS exposure by downregulating markers of ubiquitin degradation, muscle fiber differentiation, cytoskeletal proteins, apoptosis and pyroptosis via HDAC1/2 inhibition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call