Abstract

The pan-histone deacetylase inhibitor (HDACI), trichostatin A (TSA), was shown to normalize interleukin-18-induced cardiac hypertrophy in vivo and in vitro; evidently, this occurred via epigenetic mechanisms that profoundly altered cardiac gene expression (Majumdar et al. in, Physiol Genom, 43: 1392, 2011; BMC Genom, 13: 709, 2012). Here, we tested the hypothesis that TSA-induced changes in chromatin architecture also led to altered expression of microRNAs that in turn, contributed to the unique transcriptome of cardiac myocytes exposed to the HDACI. Using miRCURY LNA™ Universal microRNA PCR system, we demonstrate that H9c2 cells exposed to TSA for 6 and 24h elicited differential expression of 19 and 16 microRNAs, respectively. H9c2 cells incubated in medium-containing 100nM of TSA elicited a rapid and robust induction of miR-129-5p. Enhanced expression of miR-129-5p was also observed in the hearts of TSA-treated mice. Induction of miR-129-5p in H9c2 cells was accompanied by reduced expression of its direct target, cyclin-dependent kinase 6 (CDK6) that is a key regulator of cell cycle. Using cell division-dependent dilution of Cell Trace™ violet measurements we showed that concomitant induction of miR-129-5p and reduced CDK6 expression were mechanistically involved in TSA-induced inhibition of proliferation of H9c2 cells. Consistent with this scenario, cells expressing an antagomiR of miR-129-5p were resistant to the anti-proliferative actions of TSA. These data indicate that although TSA treatment led to altered expression of several microRNAs, the overarching action of TSA (i.e., inhibition of cell division) in H9c2 cells was achieved via miR-129-5p.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.