Abstract

ABSTRACTThe expression of cold-induced genes is critical for plants to survive under freezing stress. However, the underlying mechanisms for the decision of when, where, and which genes to express are unclear when a plant meets a sudden temperature drop. Previous studies have demonstrated epigenetics to play a central role in the regulation of gene expression in plant responses to environmental stress. DNA methylation and histone deacetylation are the two most important epigenetic modifications. This study was conducted to investigate the effects of inhibiting DNA methylation and histone deacetylation on gene expression, and to explore the potential role of epigenetics in plant responses to cold stress. The results revealed that histone deacetylase inhibitors (trichostatin A) and DNA methylation inhibitors (5-Aza-2′-deoxycytosine) treatment enhanced cold tolerance. DNA microarray analysis and the gene ontology method revealed 76 cold-induced differently expressed genes in Arabidopsis thaliana seedlings that were treated to 0°C for 24 h following Trichostatin A and 5-Aza-2′-Deoxycytidine. Furthermore, analyses of metabolic pathways and transcription factors of 3305 differentially expressed genes were performed. Each four metabolic pathways were significantly affected (p < 0.01) by Trichostatin A and 5-Aza-2′-Deoxycytidine. Finally, 10 genes were randomly selected and verified via qPCR analysis. Our study indicated that Trichostatin A and 5-Aza-2′-Deoxycytidine can improve the plant cold resistance and influence the expression of the cold-induced gene in A. thaliana. This result will advance our understanding of plant freezing responses and may provide a helpful strategy for cold tolerance improvement in crops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.