Abstract

ABSTRACTInteraction of tomato roots with Trichoderma virens TRS106 provided protection against Rhizoctonia solani-induced disease. In tomato, plants inoculated with R. solani disease symptoms were observed on the roots as brown, necrotic lesions. These symptoms were limited on plants treated with TRS106 and inoculated with R. solani. It was shown that TRS106 did not directly inhibit Rhizoctonia growth in in vitro test. The tested Trichoderma isolate stimulated systemic defence responses in tomato plants, by activating defence enzymes including guaiacol peroxidase (GPX), syringaldazine peroxidase (SPX) and phenylalanine ammonia lyase (PAL). Simultaneously, it enhanced accumulation of phenolics and hydrogen peroxide (H2O2) accompanied by decrease in lipid peroxidation in the leaves. HPLC analysis indicated remarkable increases in the concentrations of 22 phenolics in the leaves of Trichoderma-treated tomato, both uninoculated and inoculated with R. solani. Some of the phenolics were present in a free form, the others were accumulated in a bound form as glycosylated conjugates belonging to phenylpropanoids, hydroxybenzoic and cinnamic acid derivatives and flavonoids. Several of the detected phenolics: ferulic and salicylic acids, pyrocatechol and hesperetin were strongly toxic to R. solani in plate tests. The systemic mobilisation of phenolic metabolism might be an element of tomato defence response positively involved in biocontrol of R. solani by TRS106. Based on the results, T. virens TRS106 may have potential to develop a new biofungicide for integrated management of R. solani-induced disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call