Abstract

Gray blight caused by Pestalotiopsis-like species is a major disease of tea crop worldwide including India, causes significant losses in tea production. Management of disease using fungal biocontrol agents is considered an alternative eco-friendly approach to synthetic fungicides. The present study explores the efficacy of Trichoderma reesei in the gray blight management in tea crop and activation of defense related enzymes against gray blight pathogen by developing a tri-trophic interaction system. Out of 16 isolates of Trichoderma species screened in laboratory against Pseudopestalotiopsis theae, a gray blight pathogen, isolate TRPATH01 had highest antagonistic activity (81.2%) against Ps. theae and was found to produce inhibitory volatile and non-volatile metabolites. Based on ITS and TEF-1 alpha sequencing, the isolate TRPATH01 was recognised as T. reesei. The methanolic extract of T. reesei was also found effective against Ps. theae at 200 μg/mL also confirmed presence of highest volatile compounds. The isolate also produced hydrolytic enzymes such as chitinase, cellulase, protease, and lipase. Under nursery conditions, 2% and 5% concentrations with 2 × 106 conidia/ml of T. reesei were able to reduce 67.5% to 75.0% of disease severity over pathogen inoculated controls. Moreover, compared with positive and negative controls, T. reesei -treated tea plants showed increased shoot height, stem diameter, shoot and root fresh weight at 45 days after inoculation. Principal component analysis capturing 97.1% phenotypic variations, which revealed that the tea plants co-inoculated with Ps. theae and T. reesei exhibited significantly upregulated accumulation of defensive enzymes viz., polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, phenolics, β-1, 3-glucanase, and chitinase when compared to both controls. Hence, T. reesei could provide an eco-friendly and viable mitigation option for gray blight in tea gardens by inducing defense-related enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.