Abstract

Seed coating is an alternative delivery system for beneficial plant microorganisms into the soil. Although seed coats are widely used for the application of agrochemicals, the incorporation of beneficial microorganisms has not been explored deeply and their survival on seeds while in storage is unknown. The study aimed to evaluate the effect of the coating process on microbial survival and on plant growth promotion. Two coating formulations were designed, and assessed by two coating processes: rotating drum and fluidized bed. The rotating drum process resulted in more uniform coatings than in the fluidized bed process. In addition, with this coating technique, lower viability losses over time were observed. The rotatory drum prototype containing a biopolymer and a clay mineral derivate (P90) showed the best behavior at the three temperatures evaluated, with superior viabilities compared to the other prototypes and the lowest loss of viability after 12months. The formulation of this coating prototype may preserve the viability of Trichoderma koningiopsis Th003 up to 15months at 8°C, 9months at 18°C, and 3months at 28°C, which are very promising shelf-life results. Regarding the effect of seed coating on plant growth, prototypes showed higher yields > 16% than the control, comparable to the conventional use of Tricotec® WG, which may reduce the number of applications and water consumption for dissolution of the inoculant. The results demonstrated that the formulation composition, as well as the coating process may impact the microbial survival on seeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call