Abstract

This study was conducted to investigate the mechanism of action and extent of selective dopaminergic neurodegeneration caused by exposure to trichloroethylene (TCE) leading to the endogenous formation of the neurotoxin 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo) in rodents. Beginning at 3months of age, male C57BL/6 mice received oral TCE dissolved in vehicle for 8months. Dopaminergic neuronal loss was assessed by nigral tyrosine hydroxylase (TH) immunoreactivity. Selective dopaminergic neurodegeneration was determined based on histological analysis of non-dopaminergic neurons in the brain. Behavioral assays were evaluated using open field activity and rotarod tests. Mitochondrial complex I activity, oxidative stress markers, and microglial activation were also examined in the substantia nigra. The level of TaClo was detected using HPLC-electrospray ionization tandem mass spectrometry. Dopaminergic neurotoxicity of TaClo was determined in midbrain organotypic cultures from rat pups. Following 8months of TCE treatment, there was a progressive and selective loss of 50% of the dopaminergic neurons in mouse substantia nigra (SN) and about 50% loss of dopamine and 72% loss of 3,4-dihydroxyphenylacetic acid in the striatum, respectively. In addition, motor deficits, mitochondrial impairment, oxidative stress, and inflammation were measured. TaClo content was quantified in the brain after TCE treatment. In organotypic cultures, TaClo rather than TCE induced dopaminergic neuronal loss, similar to MPP+. TCE exposure may stimulate the endogenous formation of TaClo, which is responsible for dopaminergic neurodegeneration. However, even prolonged administration of TCE was insufficient for producing a greater than 50% loss of nigral dopamine neurons, indicating that additional co-morbid factors would be needed for mimicking the profound loss of dopamine neurons seen in Parkinson's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.