Abstract

Trichlorfon is a widely used organophosphorus insecticide. It has been reported that it has reproductive toxicity to animal models. However, whether trichlorfon affects testosterone biosynthesis and metabolism remains unclear. In this study, we explored the effects of trichlorfon on the steroidogenesis and the expression of genes in androgen biosynthetic and metabolic cascades in immature Leydig cells isolated from pubertal male rats. Immature Leydig cells were treated with trichlorfon (0.5–50 µM) for 3 h. Trichlorfon significantly inhibited total androgen output under basal condition at 5 and 50 μM, and under LH- and cAMP-stimulated conditions at 50 μM. Trichlorfon also downregulated the expression of Star, Sod2, and Gpx1 and their proteins at 5 and 50 μM and the expression of Cyp11a1, Hsd3b1, Cyp17a1, and Srd5a1 at 50 μM. Trichlorfon significantly inhibited total androgen output at 50 μM, which was partially reversed by 400 μg/ml vitamin E, which alone had no effects on androgen output. In conclusion, trichlorfon downregulates the expression of steroidogenesis-related genes and antioxidants, which leads to a decrease in androgen production in rat immature Leydig cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.