Abstract
In epithelial tissue, new cell-cell junctions are formed upon cytokinesis. To understand junction formation during cytokinesis, we explored de novo formation of tricellular septate junctions (TCJs) in Drosophila epithelium. We found that upon midbody formation, the membranes of the two daughter cells and of the neighbouring cells located below the adherens junction (AJ) remain entangled in a 4-cell structure apposed to the midbody. The septate junction protein Discs-Large and components of the TCJ, Gliotactin and Anakonda accumulate in this 4-cell structure. Subsequently, a basal movement of the midbody parallels the detachment of the neighbouring cell membranes from the midbody, the disengagement of the daughter cells from their neighbours and the reorganisation of TCJs between the two daughter cells and their neighbouring cells. While the movement of midbody is independent of the Alix and Shrub abscission regulators, the loss of Gliotactin or Anakonda function impedes both the resolution of the connection between the daughter-neighbour cells and midbody movement. TCJ proteins therefore control an additional step of cytokinesis necessary for the disentanglement of the daughter cells from their neighbours during cytokinesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.