Abstract

The disadvantages of autogenous bone grafts has prompted a search for a dependable onlay bone graft substitute. A combination of tricalcium phosphate, a resorbable ceramic, and osteogenin, an osteoinductive protein, was evaluated as an onlay bone graft substitute in a rabbit calvarial model. Twenty-eight tricalcium phosphate implants (15 mm diameter x 5 mm; pore size, 100-200 microns) were divided into experimental and control groups and placed on the frontal bone of 14 adult New Zealand White rabbits. In the experimental animals, 185 micrograms of osteogenin was added to each implant. In the control animals, the implants were placed untreated. Implants were harvested at intervals of 1, 3, and 6 months, and evaluated using hematoxylin and eosin histology, microradiography, and histomorphometric scanning electron microscope backscatter image analysis. At 1 month there was minimal bone ingrowth and little tricalcium phosphate resorption in both the osteogenin-treated and control implants. At 3 months, both the osteogenin-treated and control implants showed a modest increase in bone ingrowth (8.85 percent versus 5.87 percent) and decrease in tricalcium phosphate (32.86 percent versus 37.08 percent). At 6 months, however, the osteogenin-treated implants showed a statistically significant increase in bone ingrowth (22.33 percent versus 6.96 percent; p = 0.000) and decrease in tricalcium phosphate (27.25 percent versus 37.80 percent; p = 0.004) compared with the control implants. The bone within the control implants was mostly woven at 6 months, whereas the osteogenin-treated implants contained predominantly mature lamellar bone with well-differentiated marrow. All implants maintained their original volume at each time interval studied. The tricalcium phosphate/osteogenin composite, having the advantage of maintaining its volume and being replaced by new bone as the tricalcium phosphate resorbs, may be applicable clinically as an onlay bone graft substitute.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.