Abstract

Oxidative stress on retinal pigment epithelial (RPE) cells has been confirmed to play a crucial role in the development and progression of age-related macular degeneration (AMD) or other retinal degenerative diseases. Tribulus terrestris (TT) is a Chinese traditional herb medicine, which has been used for the treatment of ocular diseases for many centuries. In this study, we investigated the underlying mechanisms of TT and examined its ability to protect and restore the human retinal pigment epithelial cells (ARPE-19) against H2O2-induced oxidative stress. Our data show that 200 μg/mL of ethanol extract of Tribulus terrestris (EE-TT) significantly increased the cell viability and prevented the apoptosis of H2O2-treated ARPE-19 cells through the regulation of Bcl2, Bax, cleaved caspase-3, and caspase-9. Treatment with EE-TT also significantly decreased the upregulated reactive oxygen species (ROS) activities and increased the downregulated superoxide dismutase (SOD) activities induced by H2O2 in ARPE-19 cells. Additionally, H2O2 at 1 mM significantly decreased the mRNA expression levels of Nrf2, CAT, SOD1, SOD2, HO-1, GST-pi, NQO1, and GLCM in ARPE-19 cells; however, treatment with EE-TT reversed the downregulated mRNA expression levels of all these genes induced by H2O2. Furthermore, treatment with 200 μg/mL EE-TT alone for 24 h significantly increased Nrf2, HO-1, NQO1, and GCLM mRNA expressions in ARPE-19 cells when compared with untreated control cells. Pretreatment with the inhibitor of PI3K/Akt signaling (LY294002) completely blocked these EE-TT-upregulated mRNA expressions and abolished the improvement of cell viability in H2O2-treated ARPE-19 cells. These findings all suggest that Tribulus terrestris has significant antioxidant effects on oxidative stressed ARPE-19 cells through regulating PI3K/Akt-Nrf2 signaling pathway.

Highlights

  • Numerous studies have shown that visual impairment caused by retinal damage is among one of the most important causes of blindness, in particular, pathological retinal pigment epithelial cell layer damage in age-related macular degeneration (AMD) and other retinal diseases [1, 2]

  • Our results revealed that Tribulus terrestris (TT) has a significant antioxidant and cytoprotective effects on H2O2-treated ARPE-19 cells functioning through the phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase 1 (Akt)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway

  • We examined the potential toxicity of ethanol extracts of Tribulus terrestris (EE-TT) to

Read more

Summary

Introduction

Numerous studies have shown that visual impairment caused by retinal damage is among one of the most important causes of blindness, in particular, pathological retinal pigment epithelial cell layer damage in age-related macular degeneration (AMD) and other retinal diseases (such as diabetes and retinitis pigmentosa) [1, 2]. Protecting RPE cells from injury or delaying RPE cell damage is important in AMD treatment. The RPE cell layer plays an important role due to its unique location, which enables it to protect fundus tissue against photooxidation, as well as its function that allows it to process visual cycle [4]. An accurate balance between ROS generation and antioxidant systems maintains cellular redox homeostasis.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call