Abstract

Hydrogen detection with a high sensitivity is necessary for preventing potential explosions and fire. In this study, a novel ZnO tribotronic transistor is developed by coupling a ZnO field effect transistor (FET) and triboelectric nanogenerator in free-standing mode and is used as a sensor for hydrogen detection at room temperature. Tribotronic modulated performances of the hydrogen sensor are demonstrated by investigating its output characteristics at different sliding distances and hydrogen concentrations. By applying an external mechanical force to the device for sliding electrification, the detection sensitivity of the ZnO tribotronic transistor sensor is improved, with a significant enhancement achieved in output current by 62 times at 500 ppm hydrogen and 1 V bias voltage. This study demonstrates an extension of the applications of emerging tribotronics for gas detection and a prospective approach to improve the performance of the hydrogen sensor via human-interfacing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.