Abstract

Molybdenum disulfide (MoS2) has attracted a great attention as an excellent 2D material for future optoelectronic devices. Here, a novel MoS2 tribotronic phototransistor is developed by a conjunction of a MoS2 phototransistor and a triboelectric nanogenerator (TENG) in sliding mode. When an external friction layer produces a relative sliding on the device, the induced positive charges on the back gate of the MoS2 phototransistor act as a “gate” to increase the channel conductivity as the traditional back gate voltage does. With the sliding distance increases, the photoresponsivity of the device is drastically enhanced from 221.0 to 727.8 A W−1 at the 100 mW cm−2 UV excitation intensity and 1 V bias voltage. This work has extended the emerging tribotronics to the field of photodetection based on 2D material, and demonstrated a new way to realize the adjustable photoelectric devices with high photoresponsivity via human interfacing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.