Abstract

During the past two decades, diamond-like carbon (DLC) films have attracted an overwhelming interest from both industry and the research community. These films offer a wide range of exceptional physical, mechanical, biomedical and tribological properties that make them scientifically very fascinating and commercially essential for numerous industrial applications. Mechanically, certain DLC films are extremely hard (as hard as 90 GPa) and resilient, while tribologically they provide some of the lowest known friction and wear coefficients. Their optical and electrical properties are also extraordinary and can be tailored to meet the specific requirements of a given application. Because of their excellent chemical inertness, these films are resistant to corrosive and/or oxidative attacks in acidic and saline media. The combination of such a wide range of outstanding properties in one material is rather uncommon, so DLC can be very useful in meeting the multifunctional application needs of advanced mechanical systems. In fact, these films are now used in numerous industrial applications, including razor blades, magnetic hard discs, critical engine parts, mechanical face seals, scratch-resistant glasses, invasive and implantable medical devices and microelectromechanical systems. DLC films are primarily made of carbon atoms that are extracted or derived from carbon-containing sources, such as solid carbon targets and liquid and gaseous forms of hydrocarbons and fullerenes. Depending on the type of carbon source being used during the film deposition, the type of bonds (i.e. sp1, sp2, sp3) that hold carbon atoms together in DLC may vary a great deal and can affect their mechanical, electrical, optical and tribological properties. Recent systematic studies of DLC films have confirmed that the presence or absence of certain elemental species, such as hydrogen, nitrogen, sulfur, silicon, tungsten, titanium and fluorine, in their microstructure can also play significant roles in their properties. The main goal of this review paper is to highlight the most recent developments in the synthesis, characterization and application of DLC films. We will also discuss the progress made in understanding the fundamental mechanisms that control their very unique friction and wear behaviours. Novel design concepts and the principles of superlubricity in DLC films are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call