Abstract

Material wear and degradation is of great importance to the economy of South Africa especially within the mining, agriculture, manufacturing and power generation fields. It has been found that unexpected and high rates of fly-ash erosion occur at certain sections of power plants, this is particularly evident at the Majuba power station. The loss of small amounts of material due to erosion can be enough to cause serious damage and significantly reduce the working lifetime of, for, e.g. hopper liners. This study investigated the long-term solid particle erosion of a range of oxide and nitride-fired SiC-based ceramics and alumina with the aim of reducing erosive wear damage in power plants. This entailed carrying out experimental tests on an in-house built erosion testing machine that simulate the problems encountered in the industry. The target materials were eroded with 125–180 μm silica sand at shallow and high impact angles. The surface wear characteristics were studied using both light and scanning electron microscopy (SEM). The results obtained indicate that the erosion rates of the materials remain fairly constant from the onset. It was found that prolonged exposure to erosion results in the progressive removal of the matrix and subsequent loss of unsupported SiC particulates. The fact that the particles were relatively small did not have a significant effect on the erosion rate. This would explain the observed constant rates of erosion for longer periods. These behaviours can be further explained in terms of the composition and mechanical properties of the erodents and target ceramics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call