Abstract

CrN coatings are widely used in the industry due to their excellent mechanical features and outstanding wear and corrosion resistance. Using scratch and ball-on-disk wear tests, the current study deals with the tribological characterisation of CrN coatings deposited onto an X42Cr13 plastic mould tool steel. Two surface conditions of the secondary-hardened substrate are compared—the plasma nitrided (duplex treated) and the un-nitrided (simply coated) states. The appropriate combination of secondary hardening providing the maximum toughness and the high-temperature nitriding of this high Cr steel is a great challenge due to the nitrogen-diffusion-inhibiting effect of Cr. The beneficial effect of the applied duplex treatment is proven by the 34% improvement of the adhesion strength and the 43% lower wear rate of the investigated duplex coatings. Detailed morphological analyses give insight into the characteristic damage mechanisms controlling the coating failure processes during scratching and wearing. For the simply CrN-coated sample, a new type of scratch damage mechanism, named “SAS-wings”, is identified, providing useful information in predicting the final failure of the coating. The tribological results obtained on tribosystems with the investigated high Cr steel/CrN constituents represent a novelty in the given field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.