Abstract

Bismuth oxide (Bi2O3) coatings and composite coatings containing this oxide have been studied due to their potential applications in gas sensing, optoelectronics, photocatalysis, and even tribology. Two parametric models based on chemical features have been proposed with the aim of predicting the lubricity response of oxides. However, such models predict contradictory values of the coefficient of friction (COF) for Bi2O3. In this study, we deposited Bi2O3 coatings, via magnetron sputtering, on AISI D2 steel substrates to evaluate the tribological responses of the coatings and determine which parametric model describes them better. Experimentally, only coatings presenting the cubic defective fluorite-like δ-Bi2O3 phase could be evaluated. We performed pin-on-disk tests at room temperature and progressively increasing temperatures up to 300 °C using alumina and steel counter-bodies. Low wear and COFs (0.05 to 0.15) indicated that the δ-phase behaves as a lubricious solid, favoring the validity of one of the models. An alternative explanation is proposed for the low COF of the defective fluorite-like structure since it is well known that it contains 25% of anionic vacancies that can be ordered to form low shear-strength planes, similar to the Magnéli phases. Two challenges for future potential applications were observed: one was the low adhesion strength to the substrate, and the other was the thermal stability of this phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call