Abstract

As a 3D printing technology, selective laser melting has remarkable advantages such as high processing flexibility, high material utilization, and short production cycle. The applications of selective laser melting technology in industry have become quite extensive. There are many tribological studies on selective laser melting materials, but few based on water lubrication (Zhu, et al., Journal of Zhejiang University-Science A, 19(2), pp 95–110). In this article, the tribological properties of 316L stainless steel processed by selective laser melting and traditional methods have been studied under water lubrication. Polyether ether ketone (PEEK) filled with carbon fiber (CF)/polytetrafluoroethylene (PTFE)/graphite was selected as the counterpart. 316L stainless steel and PEEK are a tribopair commonly used in water hydraulics. This study is of great significance to the application of selective laser melting material of tribopairs in water hydraulics. Friction and wear tests were carried out on a pin-on-disc contact test apparatus under different operating conditions. The friction coefficient, specific wear coefficient, scanning electron microscopy (SEM) of the worn surface, and energy-dispersive spectroscopy (EDS) of the surface adhesions of the three tribopairs were measured and compared. The results revealed that the friction coefficient of the selective laser melting (SLM) 316L stainless steel was significantly higher than that of traditionally processed (TP) 316L stainless steel, which might be caused by the pores on the surface of SLM 316L stainless steel. Adhesion and cutting on the surface of SLM 316L stainless steel were also more serious, resulting in a higher specific wear coefficient of its counterpart PEEK composite compared to PEEK composite against TP 316L stainless steel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.