Abstract
The tungsten and vanadium oxides are promising to be usable as solid lubricants at elevated temperatures because of their ability to form oxygen deficient Magnéli-phases. As a matter of fact, metal-oxides are interesting for tribological insets at atmospheric conditions because of their expected oxidation stability and low adhesion. The study reports about the deposition of tungsten and vanadium oxides in a reactive d.c. mode by the MSIP- (Magnetron Sputtering Ion Plating) PVD process and especially about the influence of the oxygen content in the sputtering atmosphere as well as the deposition temperature on the phase generation. A simplified ‘sputtering phase diagram’ of the binary systems V–O and W–O as a function of the deposition temperature (378–650 K) and the oxygen content (0–50%) was determined. Furthermore, it was shown that the tested vanadium-oxides are phase stable up to 878 K and the tungsten-oxides up to 1100 K (measured in a high-temperature XRD facility). Additionally tribological properties of the deposited oxide coatings, like the friction coefficient vs. steel, will be presented. For polished and WO x coated samples a friction coefficient of μ≈0.2 against steel was measured at room temperature. The coatings were analyzed by various testing methods to characterize the tribological, mechanical and structural properties, like SEM, nanoindentation, (high-temperature)-XRD and pin-on-disk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.