Abstract

PurposeBabbitt bush is easy to cause severe adhesive wear due to unexpected journal fall. This paper aims to improve wear resistance of Babbitt bush.Design/methodology/approachA soft/hard hybrid surface mircoprofile of Babbitt alloy/steel was fabricated by a technology of laser texture combined with hot-pressing. The friction and wear performances of bare steel (steel-h), Babbitt bush on steel (steel-s) and Babbitt filled in dimples of steel (steel-hs) were conducted on a ball-on-disc tester under dry and lubricated conditions.FindingsThe results showed that wettability of steel-hs was enhanced by forming soft/hard hybrid surface. Compared with steel-s, the stability of friction coefficient curve of steel-hs was improved without increasing coefficient friction. The wear resistance of steel-hs was remarkably enhanced under dry and lubricated conditions.Originality/valueThe originality of this paper is as following: to improve the tribological properties and to prolong service life of steel-s, soft/hard hybrid surface of Babbitt filled in dimples of steel substrate was successfully fabricated by laser texturing combined with hot-pressing. This paper showed that the lipophilicity of steel-hs was best among those of steel-s and steel-h. Babbitt alloy as a soft filler on dimples of steel substrate improved anti-wear of steel-s remarkably. It provides a new way to fabricate Babbitt as bushing on steel substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.