Abstract

A continuing quest exists to develop high-performance grease capable of meeting extreme demands of high energy efficiency and durability of modern mechanical systems. In this study, multi-walled carbon nanotubes (MWCNT) and ionic liquids (IL) either singly or as a binary additive system were prepared to study the tribological performance of lithium greases under boundary lubrication condition. The combination of MWCNT and IL can benefit from their respective lubricating mechanism to minimize friction and wear. To test this hypothesis, MWCNT and IL are tested individually and compared with combined MWCNT-IL additive mixture within lithium-based greases. MWCNT-IL gelatinous hybrids were prepared by inducing physical non-covalent interactions between MWCNTs and phosphorous based ILs through ultrasonication and magnetic stirring. Four different phosphorous based ILs, Choline bis(2-ethylhexyl)-phosphate, Choline dibutyl-dithiophosphate, Methyl-tributyl-phosphonium dimethyl-phosphate, Tetra-n-butyl-phosphonium O,O-diethyl-dithiophosphate were used. Four ball tribological test configuration was used to assess wear and friction properties of fabricated greases. The lubrication mechanism of these additives was elucidated through analysis of worn surfaces using surface characterization techniques like SEM, EDS, and stereo optical microscopy. All greases that contain ionic liquid exhibited better tribological performance compared to grease with ZDDP. The maximum reduction of the coefficient of friction (COF) of 60% and wear scar diameter (WSD) reduction of 25% was observed for greases containing MWCNTs and phosphonium cation based ILs hybrids as an additive. Results indicated either worse or comparable anti-wear behavior in greases with MWCNT-IL hybrids as compared to greases that only contained IL or MWCNT. The antagonistic interaction between MWCNT and IL has been postulated to occur when MWCNT adversely interacts with IL formed tribofilms, negating the benefit from IL resulting in increased wear in greases with binary mixtures of MWCNT-IL.

Highlights

  • The advent of nanotechnology and nanotribology has expanded the realms of research toward the use of nanoparticles or nanomaterials as additives in lubricating media like oil or grease

  • Cursaru et al reported that Cobased single-walled carbon nanotubes (SWCNTs) could be used as an additive for mineral base oils with friction reduction, and a synergistic effect can be observed with SWCNTs and commercial lubricant additives (Cursaru et al, 2012)

  • Physical non-covalent interaction of ionic liquids (IL) and multi-walled carbon nanotubes (MWCNT) assisted in maintaining a stable dispersion of MWCNTs in grease mixture

Read more

Summary

Introduction

The advent of nanotechnology and nanotribology has expanded the realms of research toward the use of nanoparticles or nanomaterials as additives in lubricating media like oil or grease. Addition of CNT nanoparticles is well-known to improve anti-wear, extreme pressure, and load carrying capability of lubricating oil/grease. Kobayashi et al compared the tribological properties of greases containing carbon materials like graphite, cluster diamond with the grease having carbon nanohorn as extreme pressure additive and found that all carbon material containing greases resulted in improved friction and wear behavior of lithium-based grease (Kobayashi et al, 2005). Kamel et al examined tribological behavior of calcium grease containing different concentrations of MWCNTs and suggested MWCNTs formed lubricating films on the worn surfaces preventing direct metal-metal contact; minimizing wear of the interacting surfaces (Kamel et al, 2016). The practical tribological applications of CNTs are hindered due to problems like agglomerations and poor dispersibility in oil or grease

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.