Abstract

Three cellulose esters, cellulose acetate-butyrate, cellulose acetate-octanoate, and cellulose acetate-laurate, were synthesized by both conventional co-reactant reaction (CCR) and mechanical activation-assisted co-reactant reaction (MACR) methods, and the corresponding nano-cellulose esters were prepared by high pressure homogenization to comparatively investigate their tribological properties as lubricant additives in liquid paraffin base oil. MACR method was more effective than CCR method for preparing long chain cellulose esters, and the MACR-prepared cellulose esters were more easily homogenized to smaller nanoparticles. Tribological testing indicated that anti-wear and load-carrying properties of the lubricants were significantly enhanced with nano-cellulose esters as additives compared to those of pure liquid paraffin, especially the MACR-prepared long chain cellulose esters. The wear scar diameter on worn surface of the steel balls reduced with the increase in degree of substitution (DS) and chain length of long chain substituents and the decrease in size dimension of nano-cellulose esters. The polar ester carbonyl groups, unesterified hydroxyl groups, and long hydrocarbon alkyl chains in nano-cellulose esters could lead to the formation of a film layer in the steel/steel contact surfaces for protecting the metals from friction and wear, which gave the lubricants with good anti-wear and load-carrying properties. The nano-cellulose esters with high DS and long chain substituents prepared by MACR technology as ecofriendly additives exhibited better lubricating ability. Nano-cellulose esters with high DS of long chain substituents prepared by mechanical activation-assisted co-reactant reaction technology used as ecofriendly lubricant additives in base oil showed good anti-wear and load-carrying properties, ascribing to the formation of a film layer in the steel/steel contact surfaces for protecting the metals from friction and wear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call