Abstract
Purpose This paper aims to design a novel test device and study the wear properties and the thermal mechanisms of roller pairs in dual-freedom sliding contacts. Design/methodology/approach On the transition process of lubrication regimes, experiments were conducted with various values of running speed and slip ratio obtained by two motorized spindles. Temperature and surviving time would be obtained of GCr15/GCr15 and DLC/GCr15 friction pairs. Micro photography was obtained with a PGI 3D stylus profiler and a confocal microscopy OLS4000-3D. An empirical mode decomposition method was used to eliminate measure errors. Findings Results showed that, even with little initial lubricant, rolling/sliding pairs still rotated for a certain time. With the synthetic actions of the dual-freedom sliding, the loss of lubrication and the tilt, interesting helical grooves appeared. Sliding speeds had remarkable effects on survive time, temperatures and surface topographies. In addition, the equilibrium values of the temperature and the surface roughness were obtained in sufficient oil supply. Extreme wear-out conditions were obtained with starved lubrication. Diamond-like carbon coatings showed better heat resistance and better wear resistance. Originality/value This work would be critical for the life design and the heat treatment of rolling bearings in the full flood lubrication and the starved lubrication. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2024-0164/
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.