Abstract

Cu-based self-lubricating materials can effectively adapt to complex natural environments and ensure consistency in materials used for switch transitions. These materials were tested through interface reinforcement research, improving their mechanical and tribological properties and providing a theoretical basis for new switch slide baseplate materials. Results showed that the coefficient of friction and wear weight loss of Cu-based self-lubricating materials decreased with an increase in graphite content after Cu and Ni plating on the graphite surface, reaching a minimum value at a graphite content of 6 wt.%. The coefficient of friction and wear weight loss of the Ni-plated material were reduced 11.1% and 85.6%, respectively, whereas the coefficient of friction and wear weight loss of Cu-plated materials were reduced 7.2% and 78.4%, respectively. Compared to Cu plating, Ni plating substantially enhanced the friction and wear performance of Cu-based self-lubricating materials. Cu and Ni plating increased the adhesion of the materials on the pin surface and the adhesive materials’ composition was consistent with the lubricating film, which changed the grinding mechanism between the pin and the disk. Ni plating had a stronger effect on the tribological performance of Cu-based self-lubricating materials than Cu plating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call