Abstract

This study investigates and compares the microstructure, biocompatibility, and tribological properties of two different Ti-based composites, Ti–10W and Ti–7.5TiC–7.5W, with those of pure Ti for their potential use in biomedical applications. In particular, cold and hot isostatic-pressing and arc-melting methods were utilized and compared for the microstructure of the composites. Nano-scratch measurements and pin-on-disk wear tests were employed to understand their tribological behavior. As compared to pure Ti, Ti–10W and Ti–7.5TiC–7.5W showed significantly improved nano-scratch resistance (by 85 and 77%, respectively) and wear resistance (by 64 and 66%, respectively), in good agreement with hardness measurements. For biocompatibility examination, both microculture tetrazolium test (MTT) and water soluble tetrazolium (WST-1) test were used to quantify the cell viability of human osteoblasts and mouse fibroblasts on the materials. Both of the Ti-based composites showed acceptable biocompatibility in comparison with the pure Ti control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.