Abstract

-Metal Matrix Composites (MMCs) are emerging as the most versatile materials for advanced structural, automotive, aviation, aerospace, marine, defense applications and other related sectors because of their excellent combination of properties. In the present investigation, Al2024-Beryl composites were fabricated by liquid metallurgy route by varying Weight Percentage (wt. %) of reinforcement from 0 wt. % to 10 wt. % in steps of 2 wt. %. The dry sliding wear tests were conducted to examine the wear behavior of the Al2024 alloy and its composites. The sliding wear tests were conducted for various loads, speeds and sliding distances. The result reveals that wear rates of the composite is lower than that of the matrix alloy and friction coefficient was minimum when compared to monolithic alloy. The incorporation of beryl particles as reinforcement material in Al2024 alloy improves the tribological characteristics. Keywords--MMCs, Al2024, Wear Rate, Beryl, Pin-onDisc, Coefficient of Friction

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call