Abstract

The increasing demand for wear-resistant materials can be addressed by using advanced hybrid aluminum composite materials. This research focuses on developing an improved tribological performance material made of Al7075 alloy reinforced with TiB2 and graphene. The tribological performance were assessed against different environments to find their best characteristics. The effect of incremental graphene addition (0.1%, 0.2%, and 0.3% weight) and the processing route (squeeze casting) of the hybrid composite on the wear characteristics have been evaluated. Microstructure and phase characterization of the novel composite material are analyzed by means of Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) techniques. The wear resistance of the proposed material is assessed at room and high temperatures for different values of the applied load. It is found that the wear rate decreases as graphene content becomes higher. The wear mechanism at room temperature is driven by adhesion, while abrasion governs the wear process at high temperatures. Furthermore, wear turns from moderate to severe as temperature increases. Microscopic inspections of worn-out surfaces and debris confirm the change in wear behavior observed moving from room to high temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call