Abstract

A pin-disc tribotester was used to study the tribological performance of self-matching pairs of hot-pressed B4C/hBN composite ceramics under dry friction conditions and different frictional loads. After sliding tests were conducted, a scanning electron microscope (SEM) was used to analyse the sample wear surface. A confocal laser scanning microscope (CLSM) was used to measure the surface roughness of the sample wear surface. The experimental results showed that, in addition to the hBN content, the frictional parameter load had a significant effect on the tribological performance of self-matching pairs of hot-pressed B4C/hBN composite ceramics under dry friction conditions. The friction coefficients of the self-matching pairs exhibited a downward trend as the load was increased, which may have been caused by the formation of antifriction wear films on the wearing surfaces. The wear coefficient for each friction component of all of the friction pairs increased as the load increased. Wear mechanisms are discussed in detail in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call