Abstract

Nano-structured coating architectures were developed to provide a best blend of corrosion and wear resistance for high chromium content steels used in aerospace bearing and gear applications. A hybrid filtered arc-magnetron deposition process was employed to deposit functionally graded, multilayered and nanocomposite TiCrN/TiCrCN + TiBC cermet coatings on carburized steel substrates. Coatings exhibited excellent adhesion to the carburized surfaces and had hardness in the range of 23–25 GPa. Tribological properties of the coatings were characterized by: pin-on-disk COF, lubricated sliding, reciprocating sliding, and 3 ball half thrust bearing tests in dry and lubricated environments at high contact stresses. Both polyester and perfluoropolyalkylethers (PFPAE) based lubricants were used to evaluate coating performance with neutral and chemically aggressive lubrication. Sliding friction and reciprocating sliding wear tests were performed using modified disk-on-ring and point-on-disk arrangements, respectively. Contact stresses were estimated using the Hertzian contact formula (sliding friction), and through direct measurements of contact areas by SEM (reciprocating sliding). Low-speed thrust bearing high load rolling contact was evaluated at 350 °C, using Si 3N 4 balls and PFPAE-based lubricant, at contact stresses of ∼ 3.2 GPa. Aggressive corrosion testing was performed on coated samples using MIL-STD-810F “salt-fog” testing. Wear and corrosion behavior was investigated using SEM/EDS, EDX, AFM, profilometry, and optical microscopy. The influence of coating architecture on wear properties was investigated. Multifold improvements in the surface dry and lubricated wear life, reduction of the dry friction coefficient, prevention of corrosion attack from the products of PFPAE lubricant degradation, and improvement of salt-fog corrosion resistance are demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call