Abstract

The dry-sliding tribological behavior of A206 aluminum alloy containing silica sand was investigated using a three pin-on-disk tribometer against an SAE 1045 steel counterface. The worn surfaces of the pins were then analyzed by optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy (EDS). The test results showed that the addition of silica sand particles decreased the friction coefficient of Mg modified A206 alloy. The wear rate of the composites increased with increases in the applied pressure from 0.35 to1.75MPa and with increases in the silica sand content from 0% to 13%. The wear rate variation with the applied pressure is attributed to the shift in the dominant wear mechanisms from oxidation and mild abrasive wear at applied pressures at and below 0.35MPa to delamination accompanied by severe abrasive wear at applied pressure levels above 0.35MPa. The high wear rate may be as a result of an overall decrease of the fracture toughness of the composites containing silica particles. The temperature near the counterface surface increased with increases in both silica content and the applied pressure due to the lower thermal conductivity of silica sand and greater abrasion that occurs at higher silica contents. A T6 heat treatment did not significantly decrease the friction coefficient or the wear rate of either the A206 matrix alloys or the composite containing silica sand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call