Abstract

ABSTRACTResearch and development on the high biodegradability of additives is indispensable for environmentally friendly lubricants, which is one of the key factors to advance lubricant technology toward “greener” chemistry. The tribological performance of fatty alcohol polyoxyethylene phosphate acid ester (EK), boron-containing amide (BT), dialkyl dithiophosphate ester (DDE), and a mixture of these (compound) as extreme pressure (EP)/antiwear (AW) additives in hydrogenated base oil (GH) were investigated using a four-ball testing machine. The elemental composition and chemical characteristics of the AW films generated on the surfaces of the steel balls were studied using X-ray photoelectron spectroscopy (XPS), and their AW mechanisms are hereby proposed. Thermal degradation tests were conducted to identify their thermal stabilities using thermogravimetry and differential scanning calorimetry. The results show that these additives can greatly improve the EP/AW properties of GH. XPS analyses of the worn surfaces indicate that decomposed borate esters and organic sulfide or nitrides were adsorbed on the worn surface, and the P and S elements of the compound reacted with the metal and existed in the form of phosphates and sulfates, both of which contributed to the formation of a boundary lubricating film. Moreover, these additives provide the lubricants with excellent oxidation resistance and thermal stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.