Abstract
The current research work involves the fabrication and tribological properties analysis of constant basalt filler reinforced (30 wt %) bio-based polypropylene (PP) and high density polyethylene (HDPE) thermoplastic composites. Compression molding technique is used after an internal mixing process in order to produce composite samples. The physical and hardness properties have been evaluated for both neat polymers and composite samples. In order to study the coefficient of friction (COF) and specific wear rate (SWR) of PP and HDPE composite samples, the Taguchi and Analysis of Variance (ANOVA) methodologies were applied. For PP samples, the optimum parameters in response to COF are found to be 0 wt% basalt (rank 3), 9 N load (rank 1), 200 r/min speed (rank 4), and 100 m distance (rank 2); for the SWR output, the optimum parameters are 30 wt% basalt (rank 1), 6 N load (rank 4), 100 r/min speed (rank 2), and 200 m distance (rank 3). For HDPE samples, the optimum parameters in response to COF are 0 wt% basalt (rank 1), 6 N load (rank 3), 100 r/min speed (rank 4), and 100 m distance (rank 2); for the SWR output, the optimum parameters are 30 wt% basalt (rank 1), 6 N load (rank 3), 100 r/min speed (rank 4), and 150 m distance (rank 2). Consistently, it has been shown that incorporating basalt fillers to PP and HDPE composites has more dramatically decreased SWR than COF. The depth of wear constantly rises according to increasing load, irrespective of the processing variables, as shown in 2D depth profiles. It is discovered that the confirmation tests carried out for the optimum parameters are within statistically acceptable bounds. The depth profile plots revealed that the worn track edges are found with polymer bumps because of deep grooves and softened polymer debris, which commonly observed more with HDPE samples due to low softening temperature. Moreover, the worn surfaces of the composites have plowed lines and cracks that are brought about by the micro-cutting and micro-plowing activity of the erosive asperities counterface. In addition to surface characteristics, the transfer films created during sliding also significantly influenced the mode of sample wear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.