Abstract

Calcium fluoride (CaF 2) nanocrystals with average grain size of 60 nm were synthesized via a precipitation method. The morphology and structure of nanocrystals were characterized by means of transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). TEM and XRD showed that CaF 2 nanocrystals are cubic particles in submicron scale. The tribological properties of the prepared CaF 2 nanocrystals as an additive in lithium grease were evaluated with a four-ball tester. The results indicated that these nanocrystals exhibit excellent antiwear, friction reduction and extreme pressure (EP) properties. It was also found that the EP and antiwear capabilities of the grease are not proportional to the content of CaF 2 nanocrystals but there existed a certain value. The rubbed surface after friction test was investigated with X-ray photoelectron spectroscopy and scanning electron microscopy to understand the action mechanism. The results show that a boundary film mainly composed of CaF 2, CaO, iron oxide and some organic compounds was formed on the rubbed surface after friction test and the thickness of boundary film was about 12 nm. The disproportion of stoichiometric ratio of Ca and F in boundary lubrication film indicates that tribochemical reaction of CaF 2 nanocrystals occurred on the worn steel surface at severe tribological conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call