Abstract

This work presents the tribological interaction between multi-walled carbon nanotubes (MWCNTs) and silica surface using lateral manipulation in the atomic force microscope (AFM). The MWCNT is mechanically manipulated by a pyramidal silicon probe of an AFM using the same scan mechanism as in the imaging mode. With a controlled normal force of the AFM probe, it was found that lateral force applied to the MWCNT could overcome the tribological adhesion between MWCNT and silica surface, causing individual MWCNT to rotate on the silica. According to the results, the shear stresses due to tribological interacting with the MWCNTs and the silica are 59.6 MPa and 64.8 MPa for the MWCNT 1 (100 nm diameter) and the MWCNT 2 (60 nm diameter), respectively. Experimental results show that the shear stress increases with the increasing rotation angle for each manipulation, from which we determine the linear fitting function. In addition, we determine the relationship between push point and pivot point to realize the rotation behavior. The implications of tribological interaction between the MWCNTs and silica surface are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.