Abstract

In this study, the authors examine the influence of joint chemical environment by measuring changes in the tribological properties (friction coefficient and charge density) of contacting surfaces of normal and degenerated cartilage samples in bath solutions of varying pH (2.0-9.0). Bovine articular cartilage samples (n = 54) were subjected to several surface measurements, including interfacial energy, contact angle, and friction coefficient, at varying pH. The samples were delipidized and then subjected to the same measurement protocols. Our results reveal that the interfacial energy and charge density, which have been shown to be related to friction coefficient, decrease with pH in the acidic range and approach constant values at physiological (or synovial fluid) pH of 7.4 and beyond it, i.e., toward basic pH domain. The authors conclude that this rather complex response explains the long-term efficacy with respect to ageing and associated pH changes, of the phospholipid layers that facilitate the almost frictionless, hydration-lubrication involving contact in the mammalian musculoskeletal system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.