Abstract

This research work focuses on the performance characteristics of the standard SAE20W40 lubricant with the addition of nanoparticles (aluminum oxide (Al2O3) and silicon dioxide (SiO2) in equal proportion). The nanoparticles were surface-activated using oleic acid to homogenize the lubricant dispersion. The lubricant was added with 0.1, 0.3, and 0.5 wt% of nanoparticles and subjected to a mechano-thermal process to synthesize nanolubricant. The physio-chemical properties (flash point, fire point, thermal stability, kinematic viscosity, acid value, and iodine value) and tribological characteristics (specific wear rate, friction coefficient, and wear mechanism) of the nanolubricant were determined and correlated with dispersed nanoparticles. Instrumental characterization of SEM, EDS, TEM, FT-IR, and UV-Vis tests were performed to validate the surface-activated nanolubricant. The base lubricant demonstrated favorable tribological characteristics when enhanced with 0.1 wt% additives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.