Abstract

ABSTRACTDry sliding tribological characterization of redmud particle-reinforced Al6061/alumina/graphite hybrid metal matrix composite (RM-AlHMMC) was investigated as per ASTM G99-05 using pin on disc experimental setup. Initially, hybrid composites were fabricated through stir casting process by varying the wt.% of redmud particle as 3, 7, and 11, and then the wear tests were carried out based on L27 orthogonal array. The experimental results revealed that 11 wt.% RM-AlHMMC showed maximum of 90% improved wear resistance than AlHMMC. For all the composites, the coefficient of friction (CoF) increases and saturates with the applied load and sliding distance, in which 11 wt.% RM-AlHMMC showed maximum of 48% increased CoF than AlHMMC. Metallographic investigation of worn-out AlHMMC composite showed that at maximum applied load, sliding velocity, and sliding distance, the wear mechanism changes from abrasive to adhesive, but adding of redmud particle showed combined adhesive and abrasive wear mechanisms. The optimized tribological parameters were obtained using grey relational analysis which revealed that 11 wt.% RM-AlHMMC has improved tribological properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call