Abstract

An innovative approach to improving tribological behavior of surfaces and meeting long-term durability requirements of engineering devices is to design and develop novel systems incorporating multilayers and/or duplex diffusion/plasma coating treatments. In the present work, the wear and friction characteristics of diamond-like carbon (DLC) films and composite surface layers were studied by conducting pin-on-disc experiments. M 50 steel and Ti-6A1-4V alloy were used as substrate materials. The composite layers consisted of a N-diffusion zone obtained by ion nitriding, followed by a 500 Å vapor-deposited Si bond layer and a 0.4 µm DLC film. The purpose of the bond layer was to enhance adhesion between the substrate and the DLC films. An ion-beam method was used for the deposition of the DLC films. The pin-on-disc results showed that for both materials the DLC coating produced a reduction in the coefficient of friction of about one order of magnitude. The reduction in the coefficient of friction was found to be consistent with the formation of a carbon-rich transfer film on the contact surfaces. Wear scar profiling and weight loss calculations showed that the wear resistance of the DLC-coated materials was dramatically improved. Comparisons between duplex N-diffusion layer/DLC coating and single DLC coating on Ti-6A1-4V alloy substrates showed that the duplex treatments possessed a significantly higher wear resistance. Nitriding was found to cause substrate hardening that reduces subsurface deformation, thus improving coating support and extending considerably DLC film lifetime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.