Abstract

Metal glass fibre reinforced composites which are considered as advanced composite materials play a significant role in aerospace, marine and automotive industries. In the current study, an attempt has been made to examine the tribological characteristics of glass fibre reinforced plastic (GFRP) composite filled with aluminium oxide (Al2O3) and silicon carbide (SiC) powder particles. Experiments were performed on pin-on-disc tribometer to evaluate the friction and wear rate as a function of normal load and sliding velocity under different conditions. For each composition of glass-epoxy composite filled with and without fillers, sliding tests were performed with normal load (20 N, 40 N, 60 N, 80 N 100 N) and sliding velocity (2.62 m/s, 4.18 m/s, 5.23 m/s, 6.85 m/s, 7.85 m/s) respectively. The metal GFRP composites were fabricated using hand-lay-up technique. The filler content (SiC & Al2O3) in epoxy-glass composite were varied. SiC was varied from 0 to 10% while Al2O3 was kept constant at 5%. To study the worn surface of glass-epoxy composite material scanning electronic microscopy is used. Before and after the experiment, weights of the composites (pin specimens) were studied on digital balance for wear loss. The present studies reported that the fabricated metal epoxy-fibre composite has performed excellent wear resistance when compared with epoxy-fibre composite without metal powders. The present work findings offer new insights into reinforcement in epoxy-glass composites with metal powders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call